

Department of Mechanical, Materials & Manufacturing Engineering Design, Manufacture and Project MMME 2044

Air Motor Feedback Professor G E Kirk

Introduction

- The purpose of this lecture is to give feedback on the Air Motor design exercise.
- It describes a process that was followed to arrive at an outcome.
- It is presented in a logical step by step process, but in practice there were many iterations.
- A solution is presented, it is not the only solution and it may not be the best solution.

The Task

What can be deduced from available information

- The motor has three pistons (Tripiston)
- There is a focus on low cost as opposed to power, targeted at 12W
- There is the use of a needle roller bearing FAG NK24/16
- There is significant use of Additive Manufacture

A Statement of Requirements

No	Customer(s)	Requirement	Method of Demonstrating Compliance	Rank
1	Board	The motor shall produce a minimum of 12W at 600 rpm with 60% efficiency	Test	1
2	Board	The configuration shall be the best estimate of Rivale's motor	Observation	1
3	Board	The cost shall be significanty less than the current TP12	Observation	1
4	Board	The unit shall be availble for test June 2023	Test	1
5	Board	The motor shall fit the current test rig	Test	1
6				

The Morphology Chart

To poduce power using high pressure air							
	Functions/Means	Α	В	С	D	Е	F
1	To convert pressure energy to kinetic	Turbine	In-line reciprocating piston	Axial reciprocating piston	Radial reciprocating piston		
2	To convert linear motion to rotative	Crank	Offset circular cam	Lobed cam	Rack and pinion	Scotch Yoke	None
3	To time air supply and exhaust	Shaft mounted disc valve	Shaft mounted spindle valve	Camshaft	Electronic	None	
4	To reduce speed	Gear train	None				
5	To regulate inlet / outlet	Poppett valve	Disc valve	Spindle valve	Reed valve	None	

The Options

Rough Order of Magnitude Calculations (ROM)

• It is useful to establish the physical size of the motor by some ROM calculations.

Nett power	W _n
Efficiency	η
Minimum gross power	W_{g}
Pressure	Р
Speed	W
Torque	Т
Force	F
Radius of application of Force	r

The Initial Selection

- There are many options in the Morphology Chart so there needs to be a selection of the most likely for further work and elimination the others.
- It is based on engineering judgement which may turn out to be incorrect with further study so it is vital that the rational is recorded in case it has to be revested.

		1	2	3	4	5	6
1	Power 12W 600 rpm η 60%						
2	As Rivale						
3	Cost						
4	Available March 2023						
5	Fit the currenr rig						

- Option 1 worth pursuing.
- Option 2 is difficult to seal and may take longer to design.
- Option 3 does not incorporate the needle roller bearing but has the potential for for more power so worth a consideration, cost differential with AM is unlikely to be an issue.
- Option 4 Likely to be more expensive, more parts to make ad assemble with
- Option 5 Basically as Option 1 keep in mind if there is a power shortfall.
- Option 6 Technically difficult likely to be more expensive.

Converting Linear Motion to Rotary

- The radius of application of the piston force is a function
 - of the output shaft angle rotation

and

- the offset for the offset cam, r

or

- the crank throw, r
- The crank calculation is slightly more complex but a similar spreadsheet can be constructed.

Air Supply and Timing

- Pressurised air needs to be introduced into the cylinder and exhausted at the optimum points of the piston stroke.
- The timing for both is a function of the output shaft angle.
- Each cylinder has to fed and exhausted in turn.
- A spread sheet is a convenient way of modelling the combination of inlet/exhaust timing and the radius of application.

Air Motor – Basic General Arrangement

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor – Basic General Arrangement

SOLIDWORKS Educational Product. For Instructional Use Only.

Design Features

SOLIDWORKS Educational Product. For Instructional Use Only.

The Rotor Assembly - Basic

The Cylinder Body

Air Motor - Basic

Detail Drawings

SOLIDWORKS Educational Product. For Instructional Use Only.

SOLIDWORKS Educational Product. For Instructional Use Only.

Detail Drawings

SOLIDWORKS Educational Product. For Instructional Use Only.

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor - Cranked

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor - Cranked

Air Motor - Rotary Valve

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor - Rotary Valve

Air Motor – Twin Cylinder

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor - Inline

SOLIDWORKS Educational Product. For Instructional Use Only.

Air Motor - Inline

Department of Mechanical, Materials & Manufacturing Engineering Design, Manufacture and Project MMME 2044

Air Motor Feedback Professor G E Kirk